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Abstract

We discuss the semimicroscopic algebraic cluster model introduced recently, in which the
internal structure of the nuclear clusters is described by the harmonic oscillator shell model,
while their relative motion is accounted for by the Vibron model. The algebraic formulation
of the model makes extensive use of techniques associated with harmonic oscillators and
their symmetry group, SU(3). The model is applied to some cluster systems and is found to
reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3)
dynamical symmetry is also found to hold for the '2C' + '2C" system.

1 Introduction

The harmonic oscillator and the SU(3) group have proven to be invaluable tools of nuclear physics.
(See, e.g. Ref. [1].) These concepts can be used to describe complex physical systems in a relatively
straightforward way by utilizing the advantages of the group theoretical description. The harmonic
oscillator picture has been found to be a suitable approach to various nuclear excitations, which
sometimes could also be related to each other in terms of it.

Clustering can be considered a special collective excitation of certain nuclei. The structure of
these (mainly light) nuclei can be interpreted in terms of a picture based on the relative motion of
two (or more) nuclear clusters. In order to describe these nuclear systems cluster models have to
take into account the relative motion, as well as the internal structure of the clusters. These models
generally differ in their basic model assumptions, mathematical formulation and, consequently,
also in the range of ‘their applicability. Microscopic cluster models apply effective two-nucleon
forces and rigorously take into account the effect of the Pauli principle by using antisymmetrized
wavefunctions. However, fully microscopic calculations may turn out to be prohibitively difficult
for a large number of realistic cluster systems. Phenomenologic cluster models, which are based
on less strict model,assumptions may have a wider range of applicability, and are generally used
to describe a large amount of experimental data in a systematic way. Semimicroscopic cluster
models utilize the advantageous sides of microscopic and phenomenologic models by combining
the microscopic (antisymmetrized) basis with phenomenologic cluster—cluster interactions. This
allows calculations in a wider range of nuclei without forgetting about the fermionic nature of the
nucleons, i.e. without abandoning the Pauli principle.

From the technical point of view, most of the cluster models apply the geometric description,
i.e. they use (nucleon-nncleon or cluster-cluster) potentials and work in the geometric space, while
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some others prefer the algebraic description in terms of creation and annihilation operators and
the second quantized formalism. Harmonic oscillators appear in a natural way in both approaches
and offer a convenient way of interrelating them.

Receutly we have intoduced a semimicroscopic algebraic cluster model {2,3] which makes ex-
tensive use of the harmonic oscillator picture in describing the relative motion as well as the
internal structure of the clusters. In the first applications of the model we tested its ability of
reproducing certain features of realistic cluster systems and tried to estimate the validity of the
harmonic oscillator picture it is based on.

2 The Semimicroscopic Algebraic Cluster Model

Our earlier attempts of describing various nuclear cluster systems in terms of a pheonomenologic
cluster model, the Vibron model [4] and its extensions have revealed [5,6] that these models can
not distinguish between Pauli-forbidden and allowed states: complete forbidden shells can be
excluded by a simple rule, the Wildermuth condition, but no such distinction can be made within
allowed sliells. These studies, however, have also pointed out the importance of the S{/(3) group
as a possible of tool combining the relative motion and the internal structure of the clusters. This
group appears in a special limit of the Vibron model accounting for the relative motion sector,
and it can also be used to describe the internal excitations of the individual clusters. These
preliminaries have paved the way to the introduction of the semimicroscopic algebraic cluster
model [2,3].

In this model the internal stracture of a cluster is described in terms of the S{/(3) (harmonic
oscillator) shell model [7], therefore its wavefunction is characterized by the U37(4) @ Uq(3)
symmetry, where (7 refers to cluster, and {/57(4) is Wigner’s spin-isospin group [8]. The relative
motion of the clusters is accounted for by the vibron model with {U(4) group structure [4]. The
representation labels of the group chain

UST(4) @ Ue, (3) 0 UZT (4) @ U, (3) @ Ug(4)
/“T(4) GUG(3) o Ur(3) D US(2) » U(3)
J5(2) 5 0(3) D U(2) D O(2) (1)

provide us with the quantum numbers for the basis states of a two-cluster system. From this set we
have to skip those states, which are Pauli forbidden, or which correspond to spurions excitations of
the center of mass. A sinple recipe for eliminating these states is applying a matching requirement
between the quantum numbers of the shell model basis of the whole nucleus and its cluster inodel
basis [2,3]. This recipe is based on the connection between the harmonic oscillator shell model and
harmonic oscillator cluster model [10]. This procedure corresponds to a special truncation of the
extensive shell model basis in the sense, that only those states survive, which are Pauli-allowed,
and are relevant to the cluster structure under study.

When the internal structure of each cluster is described by a single U37 (4) & Uc:(3) represen-
tation, then the physical operators of the system can be obtained in terms of the generators of the
(@)T( ) R Ue, (3) 0 U"T(4) o) U, (3) 00 Un(4) group. In such a case the description is algebraically
closed, i.e. the matrix elements can be deduced by means of group theovetical techniques. In the
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limiting case when the Hamiltonian is given by the invariant operators of (1), then the eigenvalue
problem has an analytical solution, and a U(3) dynamical symmetry is said to hold.

The problem can be simplified further if one or both of the clusters are even-even nuclei
(i.e. they cousist of even number of protons and neutrons). In this case the clusters are said to
be UST(4) scalars, furthermore, if the clusters are closed shell nuclei, then they are also Uq(3)
scalars. In this case these groups and the quantum numbers associated with them do not appear
explicitly in the formulas. In Ref. [3] the formalism is presented in detail for the l/c(3) & Ur(4)
and Ug, (3) 00 Ug, (3) @ Ur(4) models, as well as for the restricted UST(4) 02 Uc(3) 00 Up(4) model.
In this latter case the restriction implies that only spin and isospin free interactions and a single
U/3T(4) representation are considered. If both of the clusters are UET(4) and Uq(3) scalars, the
model reduces to that of the simple vibron model with a basis truncation corresponding to the
Wildermuth coundition [5].

Here we give a brief account of the Uq(3) 2 U/r(4) model, which is able to describe two-
cluster systems in which one of the clusters is a closed-shell nuclens (e.g. 1He, %0, or *°Ca),
while the other one is an even—even nuclens. In this simple case the basis states can be labeled
without explicit reference to the /ST (4) group, (unless some higher excitations of the non-closed-
shell nucleus are also considered), and the cluster model basis states are characterized by the
representation labels of the group chain:

Uc(3) @0 Ur(4) D Uc(3) 03 Ur(3) D SU(3) 0 SUR(3) D SUB) D 0@B) O 0(2)
Hvz%’v,n(()_",ng],[N,0,0,0], n:,0,0,], (Acspe), (n2,0)  (Aop), K, Loy M),
(2)
The irreducible representations (X, ) of SU(3) are obtained by taking the outer product of
(Aes i) @ (124,0). N stands for the maximal number of the excitation quanta assigned to the
relative motion, and it determines the size of the model space. The angular momentum content
of a (A, pt) representation is given by the usual relations of the Elliott model [7]. For technical rea-
sons, however, it is more convenient to use the orthonormal SU(3) basis of Draayer and Akiyama
[11], rather than tHe Elliott basis, which is not orthogonal. The parity of the basis states is de-
termined by the parity assigned to the relative motion: Pp = (—1)". (The internal states of the
non—{/(3)-scalar cluster carry positive parity Fo = (—1)“$+”5‘+”§', unless major shell excitations
of the clusters are also considered.)
The coupled wavefunction can be expressed in terms of SU(3) D 0(3) Wigner coefficients:

|()‘(7~ ﬂC)’ N(nﬂ"o); (’\v H)XLM)
= Z Z <(A(r,/l(")X('IJ('f\’1(';EV(NW,O)LHMHK/\,N)\’LM)
xcLcMc LrMg
X‘(/\C,;tc)XCL(]MCHN(n,,,O)LRMR>. (3)

The physical operators can be constructed from the generators of the groups present in group
chain (2). In particular, the most general form of the Hamiltonian can be obtained in terms of
a series expansion of these generators. In the simplest case, however, when we use the SU(3)
dynamical symmetry approximation, and consider only one Uc(3) representation to describe the
structure of the non—closed shell even—even cluster, the energy eigenvalues can be obtained in a
closed form:

E = e+ yn, + % +9C( A, p) + BL(L + 1). (4)

123



In this approximation the energy levels can easily be assigned to rotational bands labeled by the
quantum numbers n. (A, g)x. (See Egs. (3) and (4).) Bands following an approximate rotational
pattern usually appear in the energy spectrum of nuclear cluster systems.

The electromagnetic transition operators are also constructed from the group generators, which
automatically implies selection rules in the dynamical symmetry approximation. The electric
quadrupole transition operator, for example, is written as the sum of the rank-2 generators of the
Uc(3) and the Ug(3) groups:

T = 4rQR) + 4cQE. (5)

The matrix elements of the operators with the basis states (3) are calculated using tensor algebraic
techniques {12].

The formulation of the Ug, (3) ¢ Ue,(3) ® Ur(4) and UST(4) ® Ue(3) %0 Ur(4) models can
be done via a straightforward generalization of the results presented here. These models can
also be used away from the SU(3) dynamical symmetry limit: in this case the diagonalization
of the Hamiltonian becomes necessary. Although the interactions applied in this approach are
phenomenological ones, they can be related to the effective two-nucleon forces, due to the use of
the microscopic SU(3) cluster model basis. See Ref. [13] for the details.

3 Applications

The applications of the semimicroscopic algebraic cluster model have been carried out so far
within the SU(3) dynamical symmetry approximation. This approximation allows exact analytical
expression of the energy eigenvalues and electromagnetic transition rates in terms of reduced
matrix elements, Clepsch-Gordan coefficients, etc. obtained from the algebraic description. Its
validity, and also that of the underlying oscillator picture can be estimated!from the comparison
of the results with the corresponding experimental data.

As an illustrative example we present here the description of the T' = 0 states of the Mg
nucleus in terms of a 2" + "2 cluster model [14]. The structure of this nucleus has been studied
carefully via various reactions both in the ground-state region and in the ragion of molecular
resonances observed in 2C'" + '2C heavy ion collisions. These experiments have resulted a large
amount of experimental information on the structure of the 22 Mg nucleus. Most of the theoretical
investigations have focused only on one of the two regions mentioned above, and relatively little
effort has been put into their simultaneous investigation.

Our aim was to give a unified description of these two domains in terms of the Ug, (3) ®
Uc,(3) @ Ur(4) model. In this description the internal structure of the (" clusters is accounted
for by the (A¢, pe) = (0,4) Uc(3) representation, which corresponds to an oblate deformation
in the geometric picture. We have analyzed about 150 experimental levels in the energy range
of 0 to 40 MeV (see Fig. 1.), and nearly 100 electric quadrupole transition probability data in
our study, which is a more complete account of the energy spectrum and E2 transitions of the
24Mg nucleus than any previous model calculation. We have displayed the B(£2) values for the
in-band transitions in Table I. Our results for interband E2 transitions are also satisfactory. The
fact that most of the transitions forbidden by the selection rules due to the SU(3) dynamical
symmetry have very weak experimental counterparts seems to indicate that the SU(3) dynamical
symmetry approach is a realistic approximation of the actual physical situation here. The model
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was able to describe the general features of the moleular resonance spectrum as well. £2 transition
probabilities calculated for in-band transitions within this region were significantly smaller than
most of the corresponding results of other models. The example of the 2¢ 4 1 gystem
demonstrated that a large number of experimental data, including the ground-state region as well
as the highly excited molecular resonances can be reconciled in terms of relatively straightforward
calculations, which is one of the major advantages of the semimicroscopic algebraic cluster model.
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FIG. 1. Positive- and negative-parity 7" = 0 energy levels of the Mg nucleus
displayed separately in rotational diagram form [14]. Circles (o) stand for states with
uncertain J7™ assignment. The lines denote the position of the calculated model bands.
(Dashed lines indicate bands with y = 0, which contain only every second possible J
value.)

Similar conclusions have heen drawn from another application of the model to the (' + a
system in terms of the restricted UZT(3) o Ue(3) 2 UUk(4) model, describing the T' = 1 states of the
130 nucleus [15]. Being a considerably less complex nuclear system than 12¢r 4 12, this example
also allowed comparison of our results with those of microscopic calculations. We have found
strong correlation between these two data sets, which seems to indicate, that the semimicroscopic
algebraic cluster model approximates certain microscopic features reasonably well.

The model has been applied in other areas of nuclear physics as well, where the cluster picture
may be relevant. In particular, the link between superdeformed and cluster states of a-like
(N = Z = even) nuclei has been discussed [16]; the allowed and forbidden binary fission modes
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of ground-state-like configurations in sd-shell nuclei have been studied [17]; and the possibility
of describing exotic cluster radioactivity has been pointed out via the example of '°Pbh + M(C
clusterization of the 24 Ra nucleus [18]. In this latter case the model has to be adapted to heavy
nuclei by introducing the pseudo-SU(3) scheme.

TABLE [. In-band transitions for the # Mg nucleus. See Ref. [14] for the sources
of the experimental data. The quantun numbers n,(\, 1)y assigned to the bands are
also displayed.

JI(Es) J7(E.f) B(E2)pxy B(E2)Tn  na(A, p)x
2+(1.37) 0*(0.0) 21.0 £ 0.42 21.02 12(8,4)0
4%(4.12) 2+(1.37) 37.8 £ 3.0 28.0

6+ (8.11) 4%(4.12) 38 4+ 13 27.1

8+(13.21) 6%(8.11) 30 + 14 23.1

3+(5.24) 2% (4.24) 38.0 £+ 5.5 375 12(8,4)2
4+(6.01) 2% (4.24) 18.7 £ 2.4 11.4

5+(7.81) 3t (5.24) 35.0 + 4.9 17.5

5+(7.81) 41(6.01) 24 £+ 10 19.5

6%(9.53) 4*(6.01) 18 + 8 18.0

7(12.35) 5(7.81) 21 + 14 19.7

8+(14.15) 6%(9.53) 9.1 + 24 13.7

2+ (8.65) 0*(6.43) 14.0 + 4.3 12.4 12(6,2)0
61 (12.86) 4%(9.30) 11.2 + 2.1 12.2

57(10.03) 37(8.36) 2018 34.7 13(9,4)0
77(12.44) 57(10.03) 504 10 32.3

57(13.06) 37(10.33) 22+ 4 28,1 13(8,3)1
47(9.30) 37(7.62) 29 + 6 35.1 13(8.3)3
57(11.60) 37(7.62) 46+ 1.4 73

57(11.60) 47(9.30) 37 + 11 31.8

2 Used to fit model parameters.

4 Summary and Outlook

We have discussed the new semimicroscopic algebraic cluster model, in which a harmonic oscillator
picture is used to account for the internal structure and the relative motion of nuclear clusters.
The model combines a microscopic harmonic oscillator basis with phenomenologic interactions
formulated in algebraic terms. Its first applications to realistic nuclear systems have shown, that
it is able to describe a large amount of experimental data in a coherent way, and also seems to
reproduce certain microscopic effects reasonably well. The SU/(3) dynamical symmetry limit of
the model was found to be a realistic approximation for several sd-shell nuclei.
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The model can be developed further along several lines. First, the treatment of cluster systems
with arbitrary open-shell structure can be considered by introducing spin and isospin degrees
of freedom. The formalism of the model can also be extended to incorporate several internal
configurations, including major shell excitations. Furthermore, by considering symmetry breaking
terms in the Hamiltonian a more realistic description of nuclei can be given, relaxing, for example
the selection rules imposed by the S{/(3) dynamical symmetry.
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